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2 The second order Doubly Asymptotic Approximation (DAAZ) 1 total number of fluid elornents in spherical surface mesh
F method..dawsloped-by Gesre-and Peiippa {1f-hias besn implemented
;.: In the SWEEPS-STAGS code41% provide a steady-state vibration 3 v -1
- analysis capability for submarged atructures. This paper extands
the previous work in dster- k ao0ustic wave number .
mining the convergence behavior of DAAZ-predicted wel surface
4 variables that are relevant to steady-stals submerged atructural K, structural stiffness matrix
:’ vibrations The convergence rates of “fluid boundary eigenvalues
» and convergence behaviors of modal acoustic impedance functions m order of asymmetric spherical surface harmonic
" are calculated for increasingly dense fluid slement grids on a -
. spherical surface. Within mode-dependent frequency ranges in (m) superscript denoting mode-derived DAA2
which DAAZ is valid. dense grids on the order of five elements per
nalf-wave are needed for {ive percent accuracy in modal acoustic n nth-mode wet surface flu.d 1ass
impedance This is & consequence of the low order (constant
source strength) interpolation used for establishing fluld variables. M, wet surface fluid mass matrix
B There are mode.-dependent frequency ranges for which DAAZ
" acoustic impedance predictions are inaoccurate. even for very dense M, structural mass matrix
:; fluid element grids These results provide guidance for engineers
K developing SWEEPS-STAGS idealizations for vibration analysis of n order of axisymmetric spherical surface harmonic
3 complex submerged structures, <
J P wet surface pressure
! NOMENCLATURE
; P wet surface pressure vector agsociated widhi fluid boun.
' 10verdots denote differentiation with respect to time, e.£ . p is dary eigenmode
.r first tune derivative of pressure) B INCIAENt Wave wat sunace Preamire vastar T
*
z a, = nth-mcde wel surface element area Pr wot surface-radiated pressure vactor
i A, = wet surface element area matrix r spherical surface radius
E o = fluid sound speed s Laplace transform variable
: 21 = superscr:pt denoling curvature-sugmentsd DAAZ u wet surface normai velocity
E C, - structural damping matrix u wet surface normal velocity vecior associsted with fluid
e boundary sigenmode
f. - mechanical input force vector
u, incident wave wet surface normal velocity vector
g = mode-derived DAAR empirical curvature parameter
. Y, nth-mode wet surface normal velocity
. G - structure coordinate - fluid coordinate wansfomaton
" matrix ug wet surface normal velocity vector
3
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£ = sructural diapis 4 vach
Z, = nth-mods (specific) sooustic fluid impedance

X = diagonal matrix of wet SUMAce Mean J0cAl CUMVATUres
K, = nth-mode wat surfacs mean curvature

A = diagonal matrix of fluid boundary sigenvaluse

i, = nth-mode Nuid boundary sigenvalue

¢ = flud density

Q; = welsurface fluid-frequency metrix

w = radian frequency

wn, = nth-mode wet surface fluid-freqrency parametsr

INTRODUCTION

The steady-state times-harmonic intsraction betwesn submerged
elastic structures and extsrior scoustic fluid is an imporiant Naval
structural mechanics and acoustics problem. Ths finite elamant
msthod (FEM) 18 the only viabls means of modaiing the vibratory
response of harmonically-sxcited, topographioally complex Jtruo.
ture composed of beams, plates, and shells. The FEM, as & means
of approximating ths mass, stifinsss. and damping distributions of
arbitrary structures, is described in many texts; {4) is & wall-
xnown example. Various numarical schames are available for
“‘exact’’ modeling of linear gooustic fluid in time-harmonio pro-
blams; two important approaches are fluld finits elements (8.6,7]
and Helmholts surface intagral squations [5.9.10). Bath of these
fluid models have been coupled to structursl finite slement codes
(11.15] such that vidration snd sound radistion problems of
coupled Muid-struciure dynamical aysiems can be analysed. Fiuid
finfte slement and Helmnholtz surface Integral approaches are
thres-dimensional and two-dimensionsl numerical methods of
discretizing tha waws squation. Thase mathods are oapabls of ex-
actly representing fluid loading effecto on the wet surface of &
submerged vitirating structure. Converganos toward sxaot solu-
tions with increasing wet surface grid density is possible as long
a8 propagating acoustic waves in the fluid domain and fiuid boun-
dary pressurs distributions are resclved (Also, in oertain Helm-
holtz intagral methods ths problem of uniqusness of aclution has
to be dealt with).

An slisrnative approximate acoustic flujid modsl is the seoond-
order Doubly Asymptotic Approximstion (DAAZ), originally
developed for tranasnt fluid-structure interaction {16]. and re-
ocently extendad to time-harmponic vibrations of submarged struc.
tures [1]. DAAZ has also been exsrcised in simple coupled vibrs-
tion and sound redistion prodlams [17). Mathematically, DAAR is a
socond-order differential equation that approximates the exact
relationship betwean fluid pressure .nd velocity on & two-
dimensional boundary of a three-dimansionsal infinits fluid do-
main. The boundary sguations ars, affectively. dimsnaionally-
reduced versions of thres-dimensional fluid fisld equations.
Numerical implamentation of DAA2 follows & boundary elemsnt
method (BEM, also discussed In [4]), sinoe the spatial variations of
fiuid pressure and wvelocity on the boundary of an infinite exterior
flusd (wet surface of & submerged structure) are intsrpolated by
assumad functions jocal to slements of the surface. The frequency
domain impedance (ratio of pressure to velocity) approximation is
governad by the order of the DAA squation used.

A structural dynamics analyst usually invokes many approx.
imations when devising idealizations of complicated Structures.
The inherent assumptions of tis mathematics underlying an
analysis computer code (s.¢.. structural FEM ocoupled with fluid
BEM in the presant case) comprise an approximation level to be
acoepted at the onast. The analyst must cndeavor to minimize the
influsnoe of discretization arrors on predicted responass variables.

More often than not, the analyst {sces the task of predicting the

responss of & SILHSIEE Sruslire for which no previous modeiing
axperience exists. In such cesss, information on the ability of the
chosent numerioal method 10 rspresent the response of aimpis
structures demonstrating known behavior is useful guidance for
Aaveloping valid idsalizations of complicated structures.

Valid FEM/BEM idealizations of vibrating submarged struc-
tures are those which correctly resolve structural bending and
membrans travelling waves and resonant standing waves poorly
ocontrolied by structursl damping. Similarly. the acoustic im-
pedance that exterior fluid presants (o the structural wet surface
must be reacived in the frequency domain and in space. Mathe-
maticel ideslizations have hops of mesting thess requiremants if
they possess (1): a sufficient number of structural slsments per
wavelongth of unportant bending or mambdrane responss patterns,
and (8); » sufficient number of fluld boundary slementa par
wavelength in important wet surfads stalionary or travelling
response patierns. The optismsum wet surfece FEM/BPEM grid
depends on the interpolation orders of structus il and fluid
eloments relative to the response patiern complexity.

This paper pressnts benchmark problem resuits that should be
useful to users of the SWEEPS-STAGS code [2.18). which utilizes
coupled structural FEM and DAAZ-based fluld BEM for prediction
of the nonlinear ‘ransisnt or linear time harmonic responss of
submerged shell ructures. In particular, the abtlity of the
SWERPS-8TAGS fluid boundary elements and the DAA2 spproxima-
tion to resclve the modal acoustic impedance funetions of &
spherical surface exposed to an infinite extent of extarnal acoustic
fluid is examined.

A DAA2Z MODEL POR ACOUSTIC IMPEDANCE
The DAAZ squations defining san approximats relationship be-

tween pressurs and velocity on the surface of a submarged
vibrating structure have been reportsd elsswhere (2], they are

time-harmonic specializations of the iransient squations (16} The .

coupling of structural stiffness, structural damping. sti-uctural
mass. and complax-valued acoustic fluid impedance is apparent in
the DAAR frequency domain matrix equations (eqs. (1) and (21 of

f2n:
B T
- th
B Ey Ps &
where  E, = -u'M, + WG, + K,
E, = G4

Ey = 00 ' MQT + QMG
—w‘u, + g6 Gwhy + 9 Ap
& - Q4P

g = oo (0°M - Ry,

t!‘

An approximate rnode! of the pressure and velocity relation-
ship on a closed surface within an extertor fluid of infinite extent.
shiown in Figure 1, can be obiained by suppresmng sli siructursi
matrioes and speci{ying sero incident-wave pressure and velocity.
Under theas conditions. the scaitered pressure can be intarpretsd
as radiated pressure and squation (1 reduces to

[-w'My + o€ GwAy + DAl pp + loe G MGT + QMG X =0 12)

The foliowing transformation converts “‘structural’” dizplace
ment vector X to wet surface velocity vector U,

u, = -plTx 3

If y, 18 imagined as describing modsl standing wave rmotions
of the fluid “‘boundary’” in the abgence of external driving forces
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Figure 1 - Two-Dimensional Fluid Surface in Throe-Dimensional
Exterior Fluid Domain

{;. then (2), when combined with (3), reduce to a frequency-
domain relationship between fluid boundary pressures and
velocities required to sustain these modes:

[-w?M; + oc QwAr + QApI P = foclw@M( ~ w*M)] u (4)

An equivalent expression in the time domain is:
M, P + gcAr p + ooR¢A; P = oc (MU + QM 1) {6

Equations (4) and (5) are the DAAZ equations defining the
fluld pressure p on the surface of a fluid boundary vibrating
freely with velocity distribution u at frequency w. This interpreta-
tion of the conditions under which the general DAAR fluid.
structure expressions (1) were reduced to either (4) or (8) implies
that DAA2 modal acoustic impedance functions can be defined for
»very fluid boundary ‘‘mode,"” provided the modes are uncoupled.
‘This is possible only for a limited number of fluid surface
geometries: the infinitely long cylindrical surface and the spherical
surface are two examples. The spherical surface is considered
here.

SPECIALIZATION TO SPHERICAL SURFACE

The acoustic impedance functions implied by the DAAZ dif-
ferential equations relating wet surface pressure and velocity are

derived for the two DAAR forms (mode-derived DAA‘;” and
curvature-augmented DAA';’) in the Appendix. Equations (4) and (8)
above are used as a basis for this development. When these two
functions are spectalized to uncoupled acoustic mode situations,
the resulting complex-valued DAAR acoustic impedance poly-
nomials are functions of *'fluid boundary mode'" eigenvalues and
radiated-wave curvature parametars. The notion of fluid boundary

modes and the meanings of DAA"Z"’ and nAA'Z' are described more
completely by Geers [16,19] and Felippa {20]. In DAA‘;” the curv-
ature parameter 1s a mode-independent empirical constant, while

DAA'" uses a matrix of local wet surface curvatures. As shown In

P

the Appendix. the accuracy of DAA2-predicted wet surface modal
acoustic impedance depends on the accuracy of computed fluid
boundary eigenvalues Fluid element grid densities needed for a
given acceptable acoustic impedance error level In frequency
ranges of DAAZ method validity can be readily defined for the
spherical wet surface problem since the modal impedances are un-
coupled As shown in the Appendix, each DAAZ-based complsx

modal impedance i8 & function of one fluid boundary mode, each
of whioh ocorresponds to the low frequency limit of the exaot '‘ac-
cession to inertia per unit area’ of an wcoustic mode of a spherioal
surface.

The general sxpressions for DAA‘;“’ and DAA 'Y modal acoustic

impedances, equations (A18) and (A17) of the Appendix. reduce to
simpler forms when the normalizations ¢ = ¢ = r = unity are used

for a spherical surface geometry. The DAA '] empirical curvature
parameter g 18 taken to be unity for the spherical surface, and the
DAA'S curvature function Q, reduces to 1-i,. With these particu-

lars, equations (A16) and (A17) become:

(wiy)!
ReZ, = " "
(why)” = (WA} +1
DAAY : " " (8)
Im2, s
Jw (wAp)* - (wip)® + 1
(why)*
ReZ, = -
o {whp)® - twdp)® + gy
el .
DAA'Y . 7
Im2, Apfdiay) = Antwiy)t)
o wigt - wip® + gy

where  gQ,) = (A% + 1) + A ((why)E -1)-

The ‘‘exact’’ low frequency limits of a spherical surface’s fluid

-boundary eigenvalues, A, = 1/(n+1), can be used in equations (6)

and (7) to define ‘'exact’’ DAAZ modal acoustic impedance func-
tions Z,. Approximate A;; as predicted for various SWEEPS-STAGS
fluid element grids, can be substituted in the same expressions to
obtain associated approximate Z,,. The convergence of 2, and i,
toward values based on exact fluid boundary eigenvalues (the best
results poesible with DAAZ) with increasing fluid element grid
density 1s now examined. Frequency ranges of DAAZ2 method
validity are also datermined by comparison to exact modal series
solutions (21).

SWEEPS-STAGS MODAL IMPEDANCE RESOLUTION 8TUDY

Equations (6) and (7) show that DAA2 polynomial approxima-
tions of impedance functions Z, depend only on frequency w and
fluid boundary eigenvalues A,. Thus. only the FLUMAS (Fluid
Mass) module of the SWEEPS-STAGS code, which calculates fluid
mass matrix M, and solves the following fluid boundary eigen-
problem, needed to be run in this study:

M = A 18)

The fuid boundary eigenvalues and ejgenvectors of a spherical
surface of unit radius, immersed in a fictional acoustic fluid of
unit density and sound speed. were determined for a series of
uniform SWEEPS-STAGS fluid slement meshes. The mesh family
considered is shown in Figure 2; the four-noded fluid elements of
the FLUMAS module of SWEEPS-STAGS were used in all cases.

As shown in DeRuntz and Geers [3). a three-dimensional
sphericai surface possesses repeating eigenvalues of many nonax-
tsymmetric wave number orders (m) for every value of axisym.
metric wave number crder (n) of n = 2 and above. Hence, FLUMAS
produced as many repeated eigenvalues for n » 2 as were allowed
by the symmetry plane constraints specified in the quarter sphere
idealizations of Figure 2. These eigenvalues occurred In the se-
quence (1 (n+1}), which is a reduction of equation 8.31 of Junger
and Feit [22] for unit spherical surface radius and unit fluid
density.
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Figure 2 - Family of Fluid Element Meshes on a Spherical Surface
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Figure 3 - Convergence of Spherical Surface Fluid Boundary
Eigenvalues with Increasing Fluid Element Density

In (3), convergence rates of fluid boundary eigenvalues were
presented for n=0 and n=1 modes of a spherical surface. The pres-
ent work extends thess results to n » 2. FLUMAS-computed fluid
boundary eigenvalue convargence rates for the grids of Figure 2
are presented in Figure 3. These computations exhibit a conver-
gence rate of roughly (1/I), where I is the number of elements in
the mesh. These predictions agree, qualitatively, with those obtain-
ed earlier by DeRuntz and Geers [3]. The predicted differences bst-
ween theoretically identical eigenvalues of like n-order but differ-
ing m-order become greater as n increases and/or grid density
decreases. This 18 indicated by the error ranges drawn in Figure 3.
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Figure 4 - Erroneous Mode-Derived DAAZ2 Prediction of Acoustic
Impedance of N =0 Mods
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Figure Ba - Comparison of Sweeps-Stags Modal Acoustic Impedance
Predictions to Exact Solution for Spherical Surface

The DAAZ spherical surface impedance functions of equations
(8) and (7) were calculated for each axisymmetric mode O € n £ 4,
and for each mesh of Figure 2 in the normalized frequency range
0.1 <w/(n+1) < 10.0. It {8 known that acoustic impedance follows
a transition between high- and low-frequency asymptotic limits in
this frequency range. The results of the impedance calculations
are shown in Figures 4 and 8.

The mode-derived forms of DAAR modal acoustic impedances
given by equation (8) were found to be inadequate. Although con-
vergence with increasing grid density occurred, the converged
functions were totally erronecus. Figure 4 demonstrates this fund-

amental inadequacy of DAA‘;” by comparison to exact fluid im-

pedance functions of Felippa and Geers [21).

In certain frequency rangdes, the DAA o polynomials of equa-

tions (7}, with exact fluid boundary eigenvalues substituted, did
not accurately represent the exact modal series acoustic impedance
solutions [21]. This error reflects DAA2 frequency domain approxi-
mations and is independent of fluid element grid density. On the
other hand, acoustic impedances based on approximate fluid boun-
dary eigenvalues did convergde to the exact modal series solution in
frequency ranges where the exact DAAR solutions are fair repre-
sentations of exact modal series acoustic impsedance.

The different convergence bghaviors for n=0 through n=4 are
illustrated in Figure 5. The modal series n=0 impedances are ac-

curately predicted by DAA'CZ' in the entire frequency range 0.1 <
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Figure 6¢ - Comparison of Sweeps Stags Modal Acoustic Impedonce
Predictions to Exact Solution for Spherical Surface
{conuinued)

w (A+11< 10 0 sven with a very coarse grid (Figure 3a; The

DAA Z n~1 impedances converged to the exact fluid boundary
ergenvalue solulion with 1ncreasing grid density. For n=1. the ex
act DAA "} solutions are. like for n=0. essenuaily tne exact

modal series curves (Figuce Bb) However. for n=3, 3

and 4. the exact DAA'S solutions are not ius? 1o the modal series
solutions in the enlire frequency range of interest Exact modal
series. gxact DAA'; and approximale DAA';’ n=2 modal acoustic

impecances are compared 1n Figure Sc for ssveral fluid element
grids Por n=2, the frequency domaln errors dominate the acoustic
reactance (Im Z, 1 1n the nondimensional frequency range 04 ¢
wein+1) € 4 0. and dominate the acoustic resistance (Re Z,) for w
«1 4 This means thal DAAZ 18 inherently incapstie of properly
representing the “‘added masa’ effect In n=2 vibrations of a
spherical sutiace. as governed by Im Z,. in the dimensional fre-
quency range 1 2 <w € 12 0. and also will not accurately simulate
radiation damping foFr « < 4 2 Figures 54 and 56 show similar

0.%‘ o = L1l i o_ e b
R 0.2 0304 08 1.0 2.0 3.04.0 6.0 100
wlin+t)
{d) n = 3 MODE

Figure 5d - Comparison of Sweeps-Stags Modal Acoustic Impedance
Predictions to Exact Solution for Spherical Surface
(eontinued)
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Figure Se - Comparison of Sweaps-Stags Modal Acoustic Impedance
Predictions to Exact Sclution for Spherical SBurface
tcontinued)

iimiting ranges for n=3 and 4 The frequency ranges of validity for
DAA':' predintion of n=2. 3. and 4 modal scousiic impedances are

summarized in Tabie 1

The next considaration 1s the reduclion of spatial discreliza:
unn error in the applicability ranges listad in Table 1. The
predicted n*agnitudes of impedance terms for the saveral grids
e
P4
solutions in Tables 2 and 3 Anocther limiting fasine illusirated .n
these tables i the Inabiinty of coarssr fluid element grids to
resclve NIuld boundary eigenvalues and recognizable elgenvectors
The ratics of predicted o extct DAAZ Nuid boundary eigenvalues
low {requency asymptolic values of acosssion 1o inartia par unit
area) are gi-en for various grd densities in Table 4 FLUMAS did
predict multiple eigenvalies for the nonaxisymmatric modal pat-
terns allowed by the two symmetry planes in the quarier-sphere
wet surface 1dealizations In s similar calculation by DeRuntz {18).
a 384 slament grid was unable to predict muitiple eigenvalues for
the nonaxisymmetric m=11 modal order For this wavelorm the
erronecus differences betwoen predictad degenersis eigenvalues

considerec hare are compared to modal series and exact TJAA
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TABLE 1 - FREQUENCY RANGES OF VALIDITY FOR CURVATURE—
AUGMENTED DAAS

RATIOS OF Z, COMPONENTS: (EXACT DAA'S'/EXACT MODAL SERIES)

N LY CHLIAITEY fo Zn
n+ ¥ naa na Y n= ns nad nw nay n=d n=J nuéd

.Y R 1. . 1. 1.008 | 1. 1.000 | 2.00
0.2 1.012 | 1.017 | 1.018 8.61
0.3 1.007 | 1.023 ] 1.001 218
0.4 0.980 { 1.004 | 1.023 1.91
0s 0.934 | 0.943 | 0.970 1.33 | 280 |5.37
0e 0.690 | 0.860 | 0.865 1.03 |14 221
0.7 0.693 | 0.808 | 0.763 0.900 | 0.951 | 1.13
0.8 0.930 | 0.832 | 0.7%0 0.882  0.792 | 0.778
0.9 0.990 | 0.931 | 0.852 0.872 [ 0.775 | 0.707
1.0 1.080 | 1.080 | 1.051 0.800 | 0.608 | 0.748
1.2 1.130 | 1.263 | 1.391 0.963 ( 0.911 | 0.8078
14 1.158 ;) 1,350 | 1.843 0.984 | 0.971 | 0.884
16 1.189 | 1.384 | 1.584 0.999 | 0.999 | 1.000
18 1.148 | 1.332 | 1.530 1.008 | 1.012 ] 1.028
20 1.133 | 1.299 | 1.478 1.009 { 1.017 | 1.023
3.0 1.073 | 1.162 § 1.260 1.009 | 1.016 | 1.020
4.0 1.045 ( 1.108 | 1.148 1.008 { 1.010 | 1.013
5.0 1.067 | 1.095 1.004 | 1.007 | 1.009
8.0 1.042 | 1.070 1.003 | 1.005 | 1.000
7.0 1.048
8.0 1.031

OAA 5" ERROR IS QVER FIVE PERCENT IN RANGES:
n=2 12 < w<120 w < 14
imZn Re Zn

n=3 16 < w <240 w < 14
n=4 25 < w < 35.0 {REACTANCE) w < 18 {RESISTANCE)

TABLE 2 - CONVERGENCE OF DAAI;I‘/ MODAL ACOUSTIC REACTANCE
FOR VARIOUS SPHERICAL SURFACE GRIDS

TABLE 3 - CONVERGENCE OF DAAZ/ MODAL ACOUSTIC

REBISTANCE FOR VARIOUS SPHERICAL BURFACE GRIDS

RATIOS OF Re Z,: (OAAT?!O(ACT MODAL SERIES) )
In24 Infié I=216 | 1=384 | i=§00 | EXACY 12218 | in384 1600 | EXACT
) ()
w DAA 3 DAA 5
AT ne1 | mooe 11 r ne3 | MODE +—
0. | 0.600 | 0,756 | 1.000 | 1.000 | 1.000 | 1.000 .
[ 02 {ouss [o.m3 | 0008 | 0938 | 0.883
0.3 | 0.481 | 0.828 | 0.914 | 0.924 | 0.968
0.4 0.407 | 0.844 0.924 0.852 .97
0.8 0.684 | 0.867 0.537 0901 0.976
o8 | 0619 | 0.897 | 0882 | 0.970 | 0982 (e}
0.7 { 0.608 [ 0.926 | 0.965 | 0.979 | 0.988
o8 | 0778 | 0.952 | 0.978 | 0.v87 | 0.992
09 | 0880 | 0.977 | 0.987 | 0.892 | 0.998
1.0 | 0.807 | 0.084 | 0.983 | 0.996 | 0998
t2 0.977 | 0.988 0.99% 1.000 1 000
1.4 1.007 1.004 1.002 1.00% 1.00Y 0973 0973 0872 oM
1.6 1.019 1.00% 1.002 1.002 1.001 1003 1.003 1.001 0.999
1.8 1.023 1.008 1.003 1.002 1.001 o1 1.01?7 1.07% 5.0%2
20 1.023 1.008 1.003 1.002 1.001 Y 026 1.022 1020 10v7
T n=2 MODE s n=4 MODE-—-——-1_
<J.4t —{'s |
1.4 0.988 0.9868 0.988 0.085 0.984 te)
1.6 " 1.610 1.004 1.002 1.001 0999 1.004 1.004
18 1.018 1.0 1.009 1.008 1,006 Iad ] (8] 1.022 1005
20 1.021 1.014 1,012 1.011 1.009 1.028 1 005
3.0 1.021 1.014 1.012 1.011 1.009 -
1*) : MESH INADEQUATE TO DEFINE FLUID BOUNDARY EIGENVALUES.
{#) : OUTSIDE RANGE OF DAA'C! vaLIDITY.

TABLE 4 - CONVERGENCE OF DAAJ FLUID BOUNDARY

EIGENVALUES FOR INCREASING SPHERICAL SURFACE
GRID DENSITY

RATIOS OF im 2,: (DAA'SY EXACT MODAL SERIES)
ACY
o {124 {1 x 981122161 e 304 ] = 800 !ux‘:lzg\llﬂ.ll:..l—‘lilm::fg)
nel | N3 | —aed— MODE ne — 2
(AR 6863 | ©. (X 1) ; LX) 8,& ga! 7008
02| oss? 0980 0.98} 0. 988 0.993 0.978 0.99%4 1.004 1.017
03 | goas 0.958 0.980 0.988 099 0.979 0.99 1.009 1.023
04| 00854 0.982 0.983 0.909 0.993 0.958 0.979 0.989 1.004
0% | DBas 0.97% 099 Q.99 0.99¢
08| 0942 0993 o Q.99 a.99¢
07 1014 1003 1.007 1.004 1.003
o8 1088 1.029 1014 1.009 1.008
09 1.142 1.040 1018 1.011 1.007 %)
10 1178 1048 1.0 1.013 1.008
12 1203 1048 1.0n 1.0 1.008
1.4 1192 1.042 1.019 1.010 1.007
18] 1.1689 1038 1.018 1.009 1.006
+a 1148 1.03¢ 1014 1.007 1.008
20 1128 1028 1.012 1.003 1.004
T nx2 | MODE \ r n=d4 | MODE —{ee—m
01 0947 o8 0.987 0.994 1.004 0.984 1.006
02 0 850 0982 Q.994 1.000 1.012 0.99¢ 1.018
01 “) 0940 01377 0 987 0.995 1.007 [M] IM] 1.008 1.031
a4 D93 0 969 0 980 0988 0.980 0.997 1.023
05 - - - - - 0.945 0.970
1) MESH INADEQUATE TO DEFINE FLUID BOUNDARY EIGENVALUES
+) OUTSIOE RANGE OF DAAICI vaLIITY.

were of the same order as the spacing between elgenvalues of adja-
cent axisymmetric n-orders. All of this data implies minimum re-
quired grid densities for acoustic resistance and reactance predic-

Uon In frequency ranges of DAA']) validity, as limited by A,

resolution.

Table 8§ summarizes the convergence behavior of n=1, 2, 3 and
4 fluid boundary sigenvalues, acoustic reactances, and acoustic
resistances for gseveral different SWEEPS-STAGS fluid element
grids. The number of elements per half-wave of the modal pattern
required to resolve fluid boundary sigenvalues and modal acoustic
impedance functions accurate to five percent depends somewhat on
the fluid eigenmode shape. The n=1 mode seems to require special
consideration [t ig fair to conclude, however, that a minimum of 5
clements per half-wave is needed for five percent accuracy in fluid
boundary elgenvalue and resistive fluid impedance prediction in
the range « > 1.4 for n=2 and 3 and for w » 1.6 for n=4. Similar
requiremsants seem to hold for minimizing gpatial discretization er-
rors in ronctive tmpodnnaoa (“'ndded mase'' offect) predictions at
relatively low frequencies. These tentative mesh requirements in
SWEEP STAGS submerged structure vibration analysis may be
substantially altered by inclusion of structural impedance and/or
structural damping. Also, convergence of far-field radiation will
probably not be a8 sensitive o grid density as the near-field
yariableg aanstdered In this work.

RATIOS OF DAA'S! Ay: (APPROX./EXACT)
N EXACT 1=24 1=96 1=219 1-384 1=600
Aﬂ

0 1 BA3 N[ §:]:k] 5113 k1))

1 50 874 965 984 990 694

2 -3333 796- —_546 876 585 g_g;:
3 .25 828-_88 524932 : - 5

4 .20 875.1.015 .910-.925 955 975 980 |

THEORETICALLY DEGENERATE MULTIPLE EIGENVALUES OF LIKE n-ORDER, DIFFERING
m-ORDER. NOT RESOLVED FOR n, ] COMBINATIONS BELOW SOLID LINE.

TABLE 6 - REQUIRED SWEEPS-STAGS FLUID ELEMENT MESH
DENSITIES FOR ACCURATE PREDICTION OF MODAL
ACQUSTIC IMPEDANCE

ELEMENTS PER MODAL HALF WAVE
ELEMENTS n=1 n: 2 n 3 n 4
I IN CIRCUM. 2 4 6 8
ARC HALFWAVES HALFWAVES HALI‘WAVES HALFWAVES
24 8 4 2 1.33 1
98 16 8 4 2.6€7 2
218 24 12 8 4 3
384 32 16 8 5.33 4
800 40 20 10 6.67 5

MESH DENSITIES BELOW THESE LINES RESOLVE THESE VARIABLES TO WITHIN FIVE PERCENT OF
EXACT VALUES:

semsenee FLUID BOUNDARY EIGENVALUES Ay
-« == MODAL ACOUSTIC REACTANCE im 2,
<emmm: MODAL ACOUSTIC RESISTANCE Re Z,,

CONCLUSIONS

This work provides some initial guidelines on required
SWEEPS-8TAGS fluid grid density needed for accurate representa-
tion of acoustic impedance on a surface exposed to exterior fluid.
These guidelines should be useful in developing analytical idealiza-
tions of complicated submerged structures. The required fluid grid
density for five percent error in acoustic impedance is five
olements per half-wave in fraquency ranges where DAAR is valid.
This requirement is rather demanding and certainly reflecta the
low interpolation order of fluid variables in the SWEEPS-STAGS
fluld elements. Further studies should be undertaken to determine
whether the total wet surface input impedance of a submerged
structurs of interes! 18 governed by structural impedance (mass,
stiffness, and structural damping' or by acoustic impedance. It is
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likaly that \he surfeoe grid requirements for aczuracy of atruo.
tural vibradion prediction would vary socoording to the topographic
details of the structure, the distridbution and phaaing of the input
loads. and the stiffnass of local regions of the structure On the
other hand, sccutais prediction of far-field rediated scund
preasurse in the fluid remote from the sructure would probably
not be ag sensitive W surfacs grid denaity
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APPENDIX

MODAL IMPEDANCE FUNCTIONS IMPLIED BY DAAZ
DIFFERENTIAL EQUATIONS

The DAA2 differsntial ecuatinn aiating thve wet susfeny TTic
oity vector u to ths surface pressure vector p i1s. for coupled madsl
responses

M + 0cAD + 0cBrilp = 00 (Ml + QM) tAl)

The matrix @, is oh explicit funeticn of wet surface curvature.
and i3 an implictt function of the wat surface’s “"fluld boundary
moded”” which atw the sigenfunctions of Lha zaro-trequency hydro-
dynamic sigenprodlem:

Mpu = 1A 1A2)

In “mode-derived”' DAAZ (DAA Y, @ 18 defined by the follow-

ing. with the curvature parameter °g’’ restricted W the given
range.

QT = gocAM,-'.0< 8< 10 1A3)

In “‘cutvature-sugmented' DAAD2 (DAA'D) Qs dafined in

werms ¢’ 3 matrix of local wet surface curvatures X

9 = wh M - oK A4

In DAA"Z“'. the parametar £ 1s. heuristically. a moasure of the
average curvature of acoustic waves emittad by the radiauing wet
surface. The lower bound valus g~0 reduces second-order DAA";“

W first-order DAAL, in which the itmiting high frequency Nuid m-
pedance asymptote 18 ¢c, the impedance exhibited by plahe waves
The other extrems, g=1 0, has produced reasonable results in a
USA-STAGS spherical shell acautaring problem {18]. while g=0 5
was (ound sppropriate i t-anssent response prediction of a shock
wave-excited infinitely long cyhindrical shell [22] These two values
of § are appropriate to spherical and cylindricsl wave curvatiure.

arhe
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Tespectively. 2ince these are the dominant acoustic Wavelorma neas
the wet surface of Lhese two idealized structural boundaries

The level of accustic diacretiaation fluid boundary slement
density! is an igsve impacting the parfortance of hoth DAAR

torms In DAA"; . the curvature pararreter £ is ah additlonal

consideration that is handled musensily in DAAS The ability of

DAAZ acouctic Nuid models 10 represent the fuid boundary eigen-
modes of sume simple radiating surisce geormeiries 1s of interest
here Tha above two DAAZ veraions can be wrilten th uncoupled
rode form. these equations will be vsed o darive implisd cor-
responding specific acoustc impadance functions. {or which sxact
solutinng exist for acoustically uncoupled geomeiries The modal
DAAZ sqQusations are specializations of equations (Al and (A2}

DAA'T" m.p+ goagp + M p .

tAS)
. a.
eeim,u 4w Mo w‘:' - go (;5 )
‘n
. .
DAA ¢ tAS1above withw ™ = o-c( o )- cX, 1AB)
“ r mh

substituted for m':

Geers has shown {16] that ¢ 15 related to fluid boundary eigen:
values 1f A, are the eigenvaluss of

m oy, = L, AT

m.

ther the mode-derived o' .. must be restrictad to the range

T,

™

0gu €0, . 1AS)

where
o =@l by, A}

These consibersuions. gven that i, = m, s, «kablish the
rms . a8 shown 1n equation tAS)

The specific acoustic Impedances imnlad by equakions 1AB)
znd 1AB) for radiator surfaces demonstrating unccupled modes can
Le derived by arpLly.ng Laplace transgforms 1o (ASyand tAB: The
results are

Im:‘sx * ““:.9 . "c"" ,- I.._] p=
DAA R . 1ALDY
igcin, s° * '_.' m, 8l u

DAA L 1Al10)above with w | replacingw ', 1AL,

S o

If velueily u is taKen 10 be modal veloeity u, theft equekions

“AiGrand iAL L can be usad o define complex-valued modai

tmedances

;{0
m.5)
Lo Al

¢ Ir3
m.st e ca s v gl A,

p wim, st

4 DAA tAL2) above with o P raplasing w :. tAl3)

SRR NPT R AL T Ve TP T ST, S
LY. RN M e ;% S & Y- W

Sirice the transform varigbie 8 becomes ke for harmonic time-
dependence of all variablee. equationk (ALR1 and (A131 become.
after some slgebirs and use of some new vaziablas

Qn =0 - Ky

. velhphe - A:w' 1

Z, DAA'T = w | . 1A14)
ioreetg ¢ sclpde - 1201
,_ 3t ®
Z,DAAY = P L Bebpe - b ] (ALSI
e’ ¢ ool - if J

Afwr further complax arithmetic. and separsation tnto real and
imadinary parts. the following modal impedsnce funciions par:
tcular o the two DAA2 (orms are chlaineg

AT e ]

S TSR T

moowr L (Ee e

R R
-3 E)) () )

Imz,. DAA'Y
—_————— e - & OC

o

BV ()0 -

(%)Y - ()

whete b,o*m, a . angdQ =19~ K1,

These expressions dapand on flu.d beundary wganvalues ¢ .
Which are aquivalant 10 modal 8COLSEI0NS 4O INOTLA POT uint
radialing surface area m, -a,. and the radialed wave curvalure

ramelors & (DAA':' s o1 K, (DAA ';;v It should be pointed out
snat U0 DOUNRAATY elfenvalues correspond to low frequancy
asympiokic 11mits of "accession 1o inertla per Lnt atwa  Exact ex
Prexfions of Mmodal ACCASSONS W INrUL for the sphere afu then
e eylindor are givel s Junger and Fert [&3; who also prescht
l1ow frequency asymptolic expressions For axisy Mmeir:c maodes
the low frequercy tumit of 4, far & sphorical sus(ace s

a ¢ ..
1, isphera) nel IRFITES 2n-1 (B 31 ref 2%
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